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In  a pure straining motion, elongated rigid particles in suspension are aligned 
parallel to the direction of the greatest principal rate of extension, provided the 
effect of Brownian motion is weak. If the suspension is dilute, in the sense that 
the particles are hydrodynamically independent, each particle of length 21 makes 
a contribution to the bulk deviatoric stress which is of roughly the same order 
of magnitude as that due to a rigid sphere of radius 1. The fractional increase in 
the bulk stress due to the presence of the particles is thus equal to the concentra- 
tion by volume multiplied by a factor of order Z2/b2, where 2b is a measure of the 
linear dimensions of the particle cross-section. This suggests that the stress due 
to the particles might be relatively large, for volume fractions which are still 
small, with interesting implications for the behaviour of polymer solutions. 
However, dilute-suspension theory is not applicable in these circumstances, and 
so an investigation is made of the effect of interactions between particles. It is 
assumed that, when the average lateral spacing of particles (h) satisfies the 
conditions b < h < 1, the disturbance velocity vector is parallel to the particles 
and varies only in the cross-sectional plane. The velocity near a particle is found 
to have the same functional form as for an isolated particle, and the modification 
to the outer flow field for one particle is determined by replacing the randomly 
placed neighbouring particles by an equivalent cylindrical boundary. The result- 
ing expression for the contribution to the bulk stress due to the particles differs 
from that for a dilute suspension only in a minor way, viz. by the replacement of 
log21/b by loghlb, and the above suggestion is confirmed. The relative error 
in the expression for the stress is expected to be of order (log h1bj-l. Some recent 
observations by Weinberger of the stress in a suspension of glass-fibre particles 
for which 21/h = 7.4 and h/2b = 7.8 do show a particle stress which is much 
larger than the ambient-fluid stress, although the theoretical formula is not 
accurate under these conditions. 

1. Introduction 
The bulk properties of suspensions of elongated particles are of direct interest, 

since some natural particles, such as paper-pulp fibres, are of this form. There is 
also reason to believe that in certain circumstances the flexible macromolecules 
of polymeric materials are greatly drawn out in one direction and act hydro- 
dynamically as elongated particles. 
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Analytically, elongated particles are of course convenient for study, since the 
extensive results of slender-body theory for Stokes flow (Burgers 1938; Tuck 
1964; Tillet 1970; Cox 1970; Batchelor 1970b) may be called on, and exact results 
are available for the particular case of an ellipsoid with one relatively large 
principal diameter. Observations of the flow properties of synthetic suspensions 
in the laboratory mostly refer to spherical particles, but elongated cylindrical 
or rod-like particles seem to be next in order of simplicity and some observations 
for suspensions of such particles are now available (Goldsmith & Mason 1967; 
Weinberger 1970). 

A suspension of straight elongated rigid particles has the striking property 
that, when subjected to a steady pure straining motion, all the particles take 
up the orientation in which they individually make their greatest contribution 
to the bulk stress. It may be shown, moreover, that the contribution to the bulk 
stress due to the presence of parallel rigid particles increases rapidly with the 
length-to-breadth ratio, for a given volume fraction, in the case of a dilute 
suspension for which the particles are hydrodynamically independent. However, 
the range of values of the volume fraction for which a suspension is ‘dilute ’ in this 
sense decreases as the particle length-to-breadth ratio increases, and the particle 
stress in a dilute suspension is never more than a perturbation of the stress due 
to the ambient fluid alone. The formula for the bulk stress in a dilute suspension 
is suggestive about what happens when the concentration is too large for particles 
to be independent, but one cannot say more than that. 

It has been known for some time that various polymer solutions may exhibit 
a very much larger apparent viscosity in a pure straining motion than in a 
simple shearing motion, and experimental data concerning the stress levels are 
beginning to be available (Metzner & Metzner 1970). It is also evident that a long 
flexible chain-like macromolecule will be extended in one direction by the action 
of a pure straining motion of the solvent, to an extent which depends on the 
relative strengths of the frictional pull of the ambient fluid and the tendency due 
to Brownian motion for one part of the macromolecule to wander randomly 
relative to any other part. Calculations of the steady statistical configuration of 
an isolated macromolecule in a steady axisymmetric pure straining motion have 
been made on the basis of various assumptions about the mechanical and hydro- 
dynamic properties of ;I macromolecule, from which one can make estimates of 
the bulk stress in a solution of non-interacting macromolecules (Takserman- 
Krozer 1963; Peterlin 1966). Both the experiments and the calculations indicate 
stress components which increase with the rate of strain more rapidly than 
linearly. However, the available theory suffers from the shortcoming that only 
isolated macromolecules are considered, whereas the large stress levels observed 
in polymer solutions in straining motions undoubtedly refer to macromolecules 
in an extended form in which the hydrodynamic interactions between particles 
are significant. 

The primary purpose of this paper is to consider the effect of hydrodynamic 
interaction of parallel elongated particles in a pure straining motion on the bulk 
stress. We consider only the case of effectively rigid particles on which no external 
force or couple acts. All effects of Brownian motion are neglected. Application of 
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the results to polymer solutions would involve the further problem of incor- 
porating the effect of the hydrodynamic interaction between particles into 
calculations of the statistical shape of a macromolecule. 

2. The stress in a suspension of elongated particles 
We consider a suspension of rigid particles in an ambient Newtonian fluid 

characterized by viscosity p. Each particle is free to translate and rotate with 
the surrounding fluid, and will be assumed to be so small that the effect of inertia 
forces in the relative motion near it is negligible. 

In  these circumstances, the contribution to the bulk or average stress due to 
the presence of the particles is given without further approximation by 

where the integral is taken over the surface A,  of a particle and the summation is 
over the many particles in a volume V in which conditions are statistically homo- 
geneous (see Batchelor 1970a); aiknk is the force per unit area exerted on the 
particle surface by the ambient fluid, at  a point where the unit normal is n, and 
is to be determined as a property of the relative motion of the ambient fluid near 
the particle. 

In  the case of an elongated particle of length 21 whose surface is at  a distance of 
order b from the straight line through the two ends of the particle (the particle 
' axis '), where b 4 1, we have 

1 

/ A o  CTikXj?%kdA = -pj12S -1 l $ sds+O(b / l ) ,  (2 .2)  

where sl denotes distance along the particle axis from its centre, p is a unit vector 
parallel to this axis, and F is the force per unit length exerted by the particle 
on the ambient fluid a t  station S. The component of F normal to the particle 
length makes zero contribution to the integral for a particle on which no external 
force or couple acts, and so we have the approximate relation 

for a suspension of elongated particles. 
In  general p will be different for different particles, but in some circumstances 

the effect of the bulk motion is to cause each particle to take up the same preferred 
orientation. In  that event, (2.3) becomes 

representing a particle stress system which is symmetrical about the common 
direction p of the particle axes. 

Only the deviatoric part of the expression (2 .3 )  or (2 .4 )  for the particle stress 
tensor is significant (since the isotropic part contributes to the bulk pressure 
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which, in an incompressible fluid, is not dependent only on local quantities and 
must be determined from field equations) and the factor p g p j  may be imagined 
to be replaced by pipj - +aii here and in later formulae. 

The complete expression for the bulk stress in a suspension of parallel particles 
in a bulk pure straining motion represented by eij is then 

1 1 
Cij = - PSii + 2peij + (+aij -pipj) XZz/ p . F s ds, 

-1 

where P( = - +Cii) is the bulk pressure. We shall need later to compare the 
magnitudes of the contributions to the bulk deviatoric stress due to the presence 
of the particles and due to the pure ambient fluid. These two contributions to the 
bulk stress are not of exactly the same tensorial form unless the bulk straining 
motion is symmetrical about the direction P, so that a straight comparison of 
their magnitudes is not strictly possible in general. However, the two stress 
systems differ in a known and simple way, and there is no ambiguity in a com- 
parison of the two contributions to the quantity 

- 8(zC,2 + ’33)7 = $(&I f P), (2.6) 

where, for simplicity of symbolism, we have (temporarily) chosen the xl-axis 
to be in the direction p. This quantity is determined wholly by the deviatoric 
part of the bulk stress and is equal to 3pe1, for a Newtonian fluid.? The ratio of 
the contribution due to particles all parallel to the %,-axis to that for the pure 
ambient fluid is 

We shall be concerned in particular to ask whether this ratio can be much larger 
than unity. 

All these formulae hold for arbitrary values of the volume concentration of the 
particles. In  the next section the special forms which apply in the absence of 
particle interactions will be described, as a preliminary to consideration of 
interaction effects. 

3. Formulae for a dilute suspension 
When the particles are sufficiently far apart from each other, the relative motion 

of the fluid near one particle is unaffected by the presence of the others. We adopt 
this state of hydrodynamic independence of the particles as the defining property 
of a ‘dilute ’ suspension. 

t In the case of a circular cylindrical column of Newtonian liquid a t  whose surface the 
normal stress is zero everywhere and which is being extended uniformly in the axial 
direction at the rate ell, we have C,, = - P+ Zpe,, = 0, giving P = 2peZ2 = -pel, and 
showing that the ratio of axial tension to axial rate of extension is Zll/ell = 3p. The 
quantity 3p is known as the ‘Trouton viscosity’ (after Trouton (1906), who made measure- 
ments of this ratio for highly viscous materials such as wax and pitch). However, now that 
the tensor representation of stress and rate of strain is customary, it is preferable to avoid 
the usc of a special name for a quantity which is only a multiple of the shear viscosity. 
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In  a dilute suspension each particle is effectively immersed in fluid whose 
velocity gradient tends to a given constant value at infinity. The elongated rigid 
particle translates and rotates with the fluid, but it cannot take up the imposed 
straining motion. To a good approximation for a slender particle, the force 
component p . F exerted by unit length of the particle is determined wholly by, 
and is proportional to (in view of the linearity of the governing equations), the 
imposed rate of extension in the instantaneous direction of the particle length. 

where ekl is the rate-of-strain tensor for the motion at  infinity, and G(s) is a 
non-dimensional function of distance along the particle axis. Then (2.3) becomes 

This relation is in a form which displays a strong dependence on the particle 
length, but of course I has been used formally as a non-dimensionalizing factor 
and it remains to be seen how G depends on the thickness ratio bll. 

The function G(s) may be determined approximately by the methods of 
slender-body theory for Stokes flow, and results are available for particles of 
different cross-sectional shape and different kinds of variation of the cross- 
section along the particle length (Batchelor 1907 b) .  In  the crudest approximation, 
for which the relative error is of order (log Z/b)-l, the particle shape is irrelevant 
and 

(3.3) 

the definition of the constant b here being arbitrary to the extent of a factor of 
order unity. The influence of particle shape enters in the next approximation, 
which may be written as 

where E = (log21/R,)-1, 2rR, is the perimeter of the particle cross-section at 
station s, €2, = R, at the central section s = 0, and K is a cross-sectional shape 
parameter (K  = 0 for a circle) which may vary with s. The absolute error for 
this approximation is of order e3 in general, and a procedure for working out 
better approximations is available. In  the case of a particle for which (1 - s2)t/Rs 
and K are both independent of s, the error in (3.4) is smaller than any power of E .  

Evaluation of the integral in (3.2) with any but the crudest approximation for 
G requires a knowledge of the particle shape. We may write the expression for 
the particle stress in general as 

where 

52 F L M  46 
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is a shape factor which is unity with an error of order E for any particle. One 
useful particular result is that 

for an ellipsoidal particle with semi-diameters I, b,, co, the error in this expression 
being smaller than any power of E .  And in the case of a cylindrical particle, for 
which the expression for G ( E )  can be taken to the term of order €3 without dif- 
ficulty (Batchelor 1970b), 

1 + 0 . 6 4 0 ~  
= mq) f~ ' (0 .699  + 0*640(K + #)) + O(e3). (3.7) 

The orientation of a particle in a dilute suspension is determined by the velocity 
gradient tensor describing the bulk flow and also by the effect of Brownian motion. 
In  the case of a bulk simple shear flow, it is known from the work of Jeffery (1922) 
that in the absence of Brownian motion an elongated rigid spheroid executes 
a periodic orbit which is a member of a one-parameter family, and that for all 
these orbits the particle spends most of the orbit time near to the orientation in 
which p is normal to the direction in which the bulk velocity varies. This is an 
orientation in which the particle makes minimum disturbance of the fluid in 
its neighbourhood, and a time-average of the contribution to the bulk stress 
due to this particle (which is equivalent to an average over a number of identical 
particles with random phase in the same orbit) is of smaller magnitude than would 
be inferred from the appearance of the factor P in (3 .5 ) .  

The case of a bulk pure straining motion (or an 'extensional flow', as it is 
often termed in the literature on polymer solutions) is considerably simpler. 
Here the effect of the bulk motion on any isolated straight elongatedrigid particle 
(such as the long ellipsoid considered by Jeffery (1922)) is to make its direction 
approach that of the greatest of the principal rates of extension. (The case in 
which two principal rates of extension are positive and equal is excluded.) On 
the other hand the effect of the rotational diffusion due to Brownian motion 
couples acting on particles is to spread the particle directions about the preferred 
orientation. The steady distribution of particle directions resulting from the 
balance between these two effects in a dilute suspension of rigid spheroids has 
been calculated by Takserman-Krozer & Ziabicki (1963) for various values of the 
ratio of ell to the rotational diffusivity. The rotational diffusivity for a slender 
rigid particle is proportional to 1-2 approximately, and so is small compared with 
ell for sufficiently long particles. In  order to bring out more clearly the effect of 
particle alignment here, we shall ignore all effects of Brownian motion in the 
explicit calculations while acknowledging their relevance to the behaviour of 
macromolecules. Then provided that the bulk pure straining motion remains 
steady for a time of order eG1, where el, is the greatest principal rate of extension 
and occurs in the direction of the q-axis, all the elongated particles in a dilute 
suspension become approximately parallel to the xl-axis, in which case ( 3 . 5 )  gives 

(3.8) 
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The factor E & ( E )  in (3.8) is a slowly varying function of l/R,, and as a rough 
approximation the contribution of each particle to the bulk stress is proportional 
to 13. It is common practice in the literature of suspension mechanics to specify 
the total number of similarly shaped particles in terms of their concentration 
by volume. However, this is not an appropriate choice for elongated particles 
since the particle stress depends only very weakly on the dimensions of the 
cross-section of the particle. (And the particle stress is determined more by the 
perimeter of the cross-section than by its area, as noted in an earlier paper 
(Batchelor 1970b).) The particle length has the dominant influence, and it enters 
the formula (3.8) approximately in the form of the volume of the (smallest) 
sphere that circumscribes the particle. Thus we could usefully write the expression 
for the particle stress in a dilute suspension of parallel elongated particles in a 
pure straining motioii as 

Xi$)) = 6i16jlpel,a, (3.9) 

where (3.10) 

is the ‘volume’ fraction of the particles regarded as spheres of radius l(cQ)$. 
It appears that in the case of a dilute suspension of aligned elongated particles 

the ratio (2.7) representing the relative magnitudes of the contributions to the 
bulk stress due to the particles and due to the pure ambient fluid is simply +a. 
It is possible to find values of 1 and R, and of the number density of the particles 
such that +a takes values much larger than unity even though the true volume 
fraction of the particles is small. This makes one wonder whether dramatically 
large magnitudes of the bulk stress might be generated in a pure straining motion 
by elongated particles which occupy only a small fraction of the total volume. 
An affirmative answer is being suggested in this paper, although not simply on 
the basis of formulae for a dilute suspension. These formulae hold only when there 
is no hydrodynamic interaction between particles, and we shall now show that the 
condition for validity of the formulae is violated unless the value of +u is small 
compared with unity. 

A slender rigid body immersed in a pure straining motion acts as a force 
doublet (of strength A, say) so far as the disturbance motion a t  large distances is 
concerned, and the disturbance velocity is of magnitude Alpr2 at a largc distance 
r from the particle. The rate of strain associated with the disturbance motion 
due to a particle is thus asymptotically of magnitude Alpr3, and the condition 
that a second particle in this position will not be affected hydrodynamically by 
the presence of the first particle is 

1 ~ ~ 3  ell, 

where ell is a measure of the imposed bulk rate of strain. The number density n 
of particles whose centres are separated from each other by an average distance 
r is of order r-3, so the condition for hydrodynamic independence of identical 
particles may be written as 

nlhl <Pel,* 
52-2 
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But the doublet strength for a particle parallel to the 2,-axis is 

A = 12 ~ , ( ~ ) s d s  = - g ~ p e , , ~ ~ ~ ( ~ ) ,  S’, 
and so the condition becomes effectively 

u < 1, or nPe < 1, (3.11) 

since the shape factor Q is of order unity. The volume of a rigid sphere which in 
a pure straining motion gives rise to a distant disturbance velocity of the same 
magnitude as that due to an elongated particle of length 21 is evidently of order 
13c, and the condition for the suspension to be ‘dilute’ is that the volume fraction 
of these equivalent spheres must be small compared with unity. 

The conclusion is that dilute-suspension theory cannot predict particle 
stresses which are more than a perturbation of the stress due to the ambient 
fluid alone. 

4. The velocity distribution in a suspension of close parallel particles 

Limited though the range of applicability of the above formulae for a dilute 
suspension may be, it is clear first that a particle which is elongated makes a 
much larger contribution to the particle stress than one of the same volume and 
nearly spherical shape, and second that the contributions from different elongated 
particles are of the same sign when all the particles have the same orientation. 
These conclusions are likely to remain valid when the particles are not so far 
apart as to be hydrodynamically independent, although the magnitude of the 
particle stress will no doubt be affected by the interactions. We need new analysis 
which will take account of the interactions between particles and which will 
confirm the expectation of arpotentially large particle stress and put it in quantita- 
tive form. 

We suppose the suspension to be subjected to a bulk pure straining motion 
which is approximately steady for a time a t  least as large as the reciprocal of 
the strain rate. Brownian motion effects will again be ignored. In  these circum- 
stances an isolated elongated particle tends to become parallel to the direction of 
the greatest principal rate of extension, and it is a plausible assumption that each 
particle takes up this same orientation approximately even when neighbouring 
particles are not hydrodynamically independent. We consider the suspension in 
this state in which all the particles are approximately parallel to the x-axis, their 
positions being random. Now if the number of particles per unit volume is n, 
and if they all have about the same length 21, the average number of paxticles 
which intersect unit area of any plane normal to the x-axis is 2nl. The average 
distance between neighbouring intersections is thus a length of order 

subjected to pure straining motion 

(2nl)-9, = h say. (4.1) 

The ratio l /h determines the importance of interactions between the particles, 
and the case of a ‘dilute’ suspension corresponds to l/h < 1 (or, more precisely, 
as may be seen from (3.11), to l d / h  < 1). 
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Analysis which applies for an arbitrary value of l/h appears to be difficult, but 
there are some simplifying features in the case 

l $ h h b ,  (4.2) 

where 2b is, as before, a measure of the diameter of a particle cross-section. In 
this case the ambient fluid is moving in the space between parallel needle-like 
particles whose lateral spacing is small compared with their length, and we may 
suppose (1)  that the difference between the local velocity and the bulk or average 
velocity is a vector approximately in the x-direction, and (2) that spatial gradients 
of the fluid velocity in the x-direction are small relative to those in the (y,z)- 
plane. Inertia forces are negligible in the relative motion between adjoining 
particles, and it follows that the pressure gradient apjax must be approximately 
constant, and equal to zero in view of the (statistical) homogeneity of conditions 
in the x-direction. The equation for the x-component of velocity in the ambient 
fluid is then approximately 

It is known that this is the governing equation in the region within a distance 
from an elongated particle which is small compared with 1 (except of course near 
blunt ends of a particle) when the particle is isolated in a pure straining motion 
(Batchclor 1970b), and the new result is that, since there is no point in the fluid 
which is not within a distance from a particle which is small compared with 1 
when the condition I + h is satisfied, equation (4.3) holds everywhere in the 
ambient fluid under this condition. 

The boundary conditions to be satisfied by u, regarded as a function of y and 
z ,  are the no-slip conditions at the surfaces of each of the particles intersected by 
a plane normal to the x-axis. We shall suppose that the velocity of each particle 
is equal to the value of the bulk velocity at  the position of the centre of the particle. 
Then if we choose the axes of reference so that the bulk velocity is zero at the 
origin, the distribution of u in the (y,z)-plane through the origin satisfies the 
conditions 

u = e x(m1 11 c 

on the curve A ,  in which the surface of the rnth particle, whose centre is a t  
x = xim), intersects the plane x = 0; ell is the bulk rate of extension in the direc- 
tion of the particle lengths as before. xirn) is a random quantity with zero mean 
which takes values between - 1 and + 1 with uniform probability, and the position 
of the cross-section of particle rn in the plane x = 0 is also a random quantity. 
Figure 1 illustrates the problem for identical particles whose cross-sections are 
circular. One might think of the dependent variable u as being represented as the 
normal distance from the plane of figure l ( b ) ,  giving a surface which ri- bes or 
falls to given positions at  the curves A,; and it is a consequence of equation (4.3) 
that this surface has the same shape as a soap film stretched between the particles. 

Near any one particle, the shape of the particle cross-section will affect the 
distribution of u. But the velocity distribution becomes circularly symmetric 
at a distance of many diameters from the particle surface, irrespective of the 
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eross-sectional shape, and u there has the same value as if the particle cross- 
section were circular with a certain equivalent radius and the same force per 
unit length of the particle were exerted on the fluid (Batchelor 1970b). We can 
write this equivalent radius as ER,, where 2rR, is the actual perimeter of the 
local cross-section and the shape parameter k is related to the quantity R in 
(3.4) by K = log k. The value of k is known for several specific shapes of the cross- 
section of a particle which is locally approximately cylindrical, and lies between 
0.785 and 1.0 for simple shapes which are convex everywhere. This allows us 
to pose the above problem in terms of particles of circular cross-section, of radius b 

FIGURE 1. Sketch showing parallel elongated particles of length 21 and breadth 2b in a 
pure straining motion, with the greatest principal rate of strain in the 2-direction. The 
average lateral spacing h satisfies the condition I $ h $ b. Figure l ( b )  shows the inter- 
sections of particles with the transverse plane normal to the particle lengths a t  z = 0. 

say, on the understanding that the radius has the appropriate effective value 
when the real particle cross-section is not circular. 

The mathematical problem is then to find a solution of Laplace's equation 
which satisfies the conditions 

u = e,,z',m) a t  lo--a(m)l = P), (4.4) 
where Q is the two-dimensional vector with components (y, x ) ,  dm) specifies the 
position of the centre of the (effective) circle in which the mth particle intersects 
the plane x = 0 and b(m) is its radius. Near the intersection with mth particle 
the solution is of the form 

where dm) is an unknown length which may vary with m. The force per unit 
particle length that the mth particle exerts on the fluid (at x = O ) ,  which is what 
we want to find, is then 

d(m) and 3' are determined by the way in which the 'inner' flow (4.5) joins the 
outer flow, at  I Q  - 9 Urn), where the direct influence of neighbouring particles 
is important. 
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It is not likely that an explicit solution of equation (4 .3)  with the random 
boundary conditions (4.4) could be found. The best that I can think of doing is 
to exploit the two known primary features of the random boundary conditions, 
viz . 

(a )  the average of ell.',") over the different particles is zero, which implies that 
the average value of u over the plane x = 0 js zero, and 

(b )  the average distance between neighbouring particles is h. 
These facts show that u decreases from ellxirn) at lo - = bcm) to values which 
are zero on average at distances I o - which are of order h. Then if we ignore 
the existence of fluctuations about the average and simply require that u be 
zero at a distance h from the centre of the mth particle, we find 

= h. (4.7) 

The corresponding expression for the force per unit length exerted by a particle 
of local radius b, a t  a distance x from the particle centre, is 

The solution (4.7) would be correct if the various particles surrounding the 
mth particle were replaced by a single circular boundary a t  I o - dm)J = h where 
the velocity is zero. We are thus making a kind of 'cell model' of the flow, as has 
been done in the case of some other problems of interaction between particles 
with random positions (see Happel & Brenner 1965). Cell models do not always 
give accurate results, and the above argument cannot be said to be beyond 
question. However, it  seems unlikely here that the average value of could 
differ from h by more than a factor of order unity, since d(m) is a parameter of 
the 'outer' flow.field for the mth particle and the average spacing of the particles 
is the only length, or at any rate the only obvious length, occurring in the 
statistical specification of the geometrical arrangement of the particles. 

The above result is given a little further support by an exact solution for just 
two particles, with circular cross-sections of radius b and centres on the y-axis 
distance H apart, and equal and opposite velocities in the x-direction ( T W ) .  
The well-known solution of Laplace's equation that describes (among other 
physical applications) the stream function for two-dimensional irrotational flow 
due t o  two point vortices of equal and opposite strength in unbounded fluid is 
known to yield streamlines which are all circular, and on adapting this solution 
appropriately we obtain 

(y + QH - /3)z + 9 /log b+P ' (y - +H + P)'+ 2' 
H + b - /3 u = 4Wlog __ (4.9) 

where 2p = H-(H2-4b')*.  

When Hlb 9 1, we have /3lb < 1,  and the solution near either particle boundary 
is seen to be of the form (4.5) with d(m) z H ;  and when making a transition from 
two particles to a random array with uniform mean number density it is reason- 
able to regard the average spacing h as corresponding to the determinate spacing 
H of the two particles. 



824 G. K. Batchelor 

This same solution (4.9) shows also that when two circular particles are nearly 
touching, corresponding to H/2b being near unity, the frictional forces per unit 
length exerted by the particles are approximately 

(4.10) 

of which the denominator has small magnitude. Consequently, in an exact 
solution of (4.3) for a random distribution of particles over the whole plane x = 0 
with the boundary condition (4.4), the force per unit length exerted by those 
particles that happen to be very close to a neighbour would be found to be much 
larger in magnitude than the expression (4.8). However, our theoretical model 
of the suspension is not realistic for nearly touching particles, because we have 

x=o 
I 
I 
I 

IV I IV 
r - - t 

I 

-+-xc--d - 1 -  
p- xc - 
I 
I 

FIGURE 2.  Definition sketch for particles which are nearly touching and are separating 
with relative velocity 2 W. 

assumed each particle to be moving (in the x-direction) with a velocity equal to the 
bulk velocity at the position of its centre, whereas in reality the velocity of a 
particle is determined by the condition that no net force acts on it. If two circular 
cylinder particles each of length 21 are parallel, with distance H between their 
axes, and nearly touching over a portion 2(Z-x,) (corresponding to particle 
centres a t  x = T x,., see figure Z ) ,  and are moving with velocities W ,  each particle 
exerts on the other a retarding force 

~T,u(~-x,.) W ~ 

(H!J-%)$ 

This force is balanced by the pull exerted on the free portion of a particle, which 
we may estimate as 

ax, 

Zellxc(H - 2b): 
whence we obtain W = 

bi(E - x,) log h/b + x,(H - 2b)i 
(4.11) 

This speed of separation of two very close particles is small compared with ellxc, 
and substitution of (4.11) in (4.10) shows that the force per unit length on the 
nearly-touching portion of each particle is now of the same order of magnitude 
as the expression (4.8). Hence there is no reason to think that the occurrence of a 
certain number of very close pairs of particles (or groups of more than two) will 
invalidate the estimate (4.8). 

Finally, we note that the relative error in the expression (4.8) for Fl may be 
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expected to be of order (logh/b)-l. The numerical accuracy of the theory is 
consequently very poor, and is comparable with that obtained from the first 
approximation to the particle stress in a dilute suspension in which all features 
of the particle shape other than its length to breadth ratio are irrelevant 
(Batchelor 1970 b).  

5. The bulk stress in a suspension of close particles 
We may now substitute (4.8) in the relation (2.4) and evaluate the particle 

stress for a suspension being subjected to a bulk straining motion for which el, 
is the greatest principal rate of strain and occurs in the direction of the x-axis. 
Strictly speaking the (effective) radius b of the particle cross-section is a function 
of position along the length of the particle; however, the approximation already 
made about the outer boundary condition implies that h is arbitrary t o  the 
extent of a factor or order unity, and we may therefore take b as a constant length 
and choose it for convenience to be R,, where 27rR, is the perimeter of the central 
cross-section of the particle. We then find 

477 13 a? = 4 1  Q % l  x l o g o  
where h = ( 2 4 - 4 .  

This expression for the bulk stress is applicable when I 9 h R,, and it is a 
consequence of this condition that the volume fraction of the particles is small 
compared with unity, although not so small that the suspension is dilute in the 
sense of negligible particle interactions. 

The similarity of form of this expression and the expression (3.8) found for a 
dilute suspension of parallel particles is striking. In  particular, the same strong 
dependence onparticle lengthis present in (3.8) and (5.1). Ifwe regard thefunction 
&(e) in (3.8) as being unity, for the purpose of comparing (3.8) with a less 
accurate formula, the sole difference between the two expressions is that 
logZZ/R, in (3.8) is replaced by logh/R, in (5.1). This similarity of the two ex- 
pressions for the particle stress results of course from the fact that the particle 
interactions considered in the previous section simply modify the ‘outer flow’ 
for one particle and lead to the outer boundary condition of zero disturbance a t  
infinity in all three dimensions (for a dilute suspension) being replaced by zero 
velocity disturbance a t  the cylindrical boundary ( y2 + x 2 ) 8  = h. We note that the 
two formulae would give the same values for the particle stress at  n = ( 2 l ) - 3 ,  

when h/21 would be unity, which lies outside the range of validity of either 
formulae; interpolation between the two formulae in the range h/l = O(1) is 
thus possible. 

It appears then that a pure straining motion can generate a bulk deviatoric 
stress which is of much larger magnitude than that for the pure ambient fluid, 
even when the volume fraction of the particles (G) is small compared with unity. 
We may see this explicitly by taking the case of a suspension of identical cylin- 
drical particles of circular cross-section, for which 

h 
c = 2nR;ln and - = (:I4. 

RO 
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The conditions (4.2) for validity of the close-particles formula imply that 

c4 < 1 and dl/R, > 1. 

Under these conditions the ratio of the contribution to Xll - &(X,, + &) due to 
the presence of the particles to that due to the pure ambient fluid is 

This ratio exceeds 700 when c = 0.01 and IIR, = lo3. In  the case of particles 
whose cross-sections are flattened, the volume fraction needed to produce the 
same magnitude of particle stress is even smaller. 

It is instructive to show on the one diagram how the deviatoric particle stress 
varies over the whole range of values of the number density (n) for a suspension 
of identical particles. In  a dilute suspension the particle stress is proportional to n, 
and in the close-particles range there is only a weak departure from linearity. 
A convenient quantity to plot is therefore 

which can be regarded as a non-dimensional form of (one component of the) 
deviatoric particle stress per particle in unit volume. In the close-particles range 
(5.1) shows that the expression (5 .3 )  is equal to 

4m/9 4n/ 9 
or ~ 

log, log 21/Ro - $log 8nP' (5.4) 

which is plotted in figure 3 for several values of l/Ro, and in the range correspond- 
ing to a dilute suspension (3 .8)  shows that (5 .3)  reduces to 

The first approximation to Q ( E )  when 1/R, > 1 is unity for particles of any shape, 
but the curves in figure 3 have been calculated from the expression 

& ( E )  = (1 - #(log 2l/RO)-')-', 

which is correct to the order of any power of E for a spheroidal particle and is 
likely to be more accurate for a particle of unknown shape than the first approxi- 
mation for Q. 

Figure 3 makes it clear that the formula obtained for a dilute suspension 
continues to give reasonably accurate results when 81% (or 21/h) is of order unity, 
which is well above the values for which the particles are hydrodynamically 
independent. In  other types of bulk flow, such as a simple shearing motion, the 
effect of hydrodynamic interaction of the particles might lead to a more radical 
change in the expression for the particle stress. 

It is obviously possible to construct interpolation formulae which behave like 
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1. One such formula for the deviatoric (5.4) when h < 1 and like (5.5) when h 
particle stress is 

X $ q ) - + ( X g + X ( q  33 = 4m/9 
3pe,, nF lOg--lOg--1.5 21 h f 2 1  ’ (5.6) 

RO h 

which reduces to the dilute-suspension formula for spheroidal particles when 
h B 1 and has the same asymptotic form, as h/l -+ 0 and R,/h -+ 0, as the close- 
particles formula. 

I/Ro=10 

so 

_ _  100 

Closc-particlcs range 
f 

6. Comparison with observation by Weinberger 
Observations of the bulk stress in a synthetic suspension of glass-fibre rods 

subjected to a pure straining motion have recently been made and described in a 
Ph.D. dissertation by Weinberger (19701, and so far as I know these are the only 
available measurements of this kind. The rods were uniformly of length 0.2 mm 
and of circular cross-section with diameter 0.0035 mm, and the volume fraction 
(in each of two liquids, ‘Indopol’ and ‘Silicone’) was 0.013; the corresponding 

length ratios are IIR, = 57, h/2Ro = 7.8, 21/h = 7.4. 

FIGURE 3. A non-dimensiond form of the deviatoric particle stress, per particle in unit 
volume, as a function of the number density of identical elongated particles, for a pure 
straining motion with ell as the greatest principal rate of strain. The solid curves in the 
range 1 < h, for which the suspension is dilute, are those found theoretically for spheroidal 
particles. The solid curves in the range I $ h were obtained from the theoretical relation 
(5.1). The broken curves are sketched interpolations. The black circle denotes the experi- 
mental result obtained by Weinberger (1970) for a suspension of identical glass-fibre rods. 
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These numbers are not large enough for the close-particles formula to be ex- 
pected to give accurate results, but a comparison with the theory nevertheless 
has some value. 

The method of observation of the stress and the detailed results will be 
described in a paper and submitted for publication. Meanwhile Dr Weinberger 
has kindly allowed me to quote his result. His pure straining motion was axisym- 
metric, with a rate of extension el, along the axis of symmetry, and he found that 
the observations of the deviatoric stress Ell - &2,22 + &) as a function of el, 
could be fitted by a straight line. The coefficient in this linear relation was found 
to be equivalent to an increase in the viscosity of each of the two ambient liquids 
by a factor of about 9t,  that is to say, the particle deviatoric stress was about 
8 times as large as the deviatoric stress for the pure ambient fluid. This observa- 
tional result is shown in figure 3. 

.For circular-cylinder particles with c = 0.013 and l/R, = 57, the value of the 
ratio of the two contributions to the deviatoric stress obtained from the close- 
particles formula (5.2) is 3.5.j: This is not close to the observed value 8, but better 
agreement cannot be expected since the experiments do not satisfy adequately 
the conditions assumed in the theory. As mentioned above, the relative error in 
the close-particles formula for the particle stress is likely to be of order (log h/ no)-,, 
which for these experiments is 0.36, too large for an asymptotic formula to be 
accurate. If in the next approximation to (5.1) the factor log h/R, were replaced, 
for instance, by log (h/R,) - 2.14, which is the modification to the factor log 21/R, 
found to be needed for a dilute suspension of circular cylinders, the theoretical 
prediction of the stress ratio for Weinberger’s suspension would be 16 instead of 
3-5. And if the interpolation formula (5.6) is used, the calculated stress ratio for 
Weinberger’s suspension is 8.6, which is quite close to the observed value. 
Similar experiments with particles having much larger values of h/2R0 and 2l/h 
are needed for a decisive check on the close-particles theory. Meanwhile the 
formula (5.6) appears to provide the best available basis for quantitative pre- 
dictions. 

The theory for closely spaced particles and Weinberger’s observation both 
show that the magnitude of the bulk deviatoric stress in a suspension of elongated 
particles subjected to pure straining motion may be much larger than that for 
pure ambient fluid, despite the fact that the volume fraction of the particles is 
small compared with unity. 

7 This number is obtained from the straight lines drawn by Weinbergor in his figures 
4.28 and 4.29 to give the best visual fit with the data. 

$ In  his dissertation Weinberger says that my close-particles formula gives 2.19 for 
the suspension used in his experiment. He explains that he used the abbreviated version 
of the formula recorded in the summary of a lecture I gave at a symposium in March 1969 
(see J .  Pluid Mech. 39, 1969, p. 397) and that he inserted numerical factors to make the 
formula consistent with that for a dilute suspension. These inserted numerical factors are 
not the correct ones (nor is there any need for consistency of the dilute-suspension and 
close-particles formulae since they apply to  non-overlapping ranges of values of n). 
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